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Objective

The long-term objective of this work is to develop a quantitative understanding of the fluctuations

in phase and amplitude of seismic wave propagation due to kilometer-scale variations in wave velocity

within the earth. The theoretical approach is to describe these variations in a statistical way: in particu-

lar to consider the variations as represented by a spectrum that depends on depth, and may depend on

geographical location. Data that are relevant to this approach include wave-forms with frequency con-

tent above one Hertz received on seismic arrays or on world-wide networks. Relatively high-frequency

data is desirable because the ability to discriminate small structure is dependent on the wave having

relatively short wavelength. Seismic arrays whose elements arc spaced in the kilometers to tens-of-

kilometers regime provide analysing power in that regime. Arrays with larger spacing, such as world-

wide networks, can still probe small scales if the various available sources have separations in the

above range; this can occur for earthquakes in active regions, or for nuclear explosions distributed

within test sites.

A realistic understanding of the small-scale structure in the earth is important to fundamental geo-

physics because it affects our understanding of the fundamental dynamical processes in the earth. Man-

tle convection, chemical differentiation, fluid permeation, subduction-zone dynamics, and crack forma-

tion all will have their effects on small-scale structure, so that creation of more sophisticated theories of

these processes will influence, and will be influenced by, our understanding of small-scale structure.

It is not likely that the seismological community will ever have a complete map of inhomo-

geneities in the earth down to kilometer scales. Therefore we will not be able to completely predict

travel-time and amplitude fluctuations for a source-receiver geometry that is even a few kilometers

different from previously measured situations. If we have a realistic statistical picture of the small-scale

structure in wave-speed within the earth, then the theory of wave propagation through random media

(WPRM) can be used to predict the scale and strength of travel-time and amplitude fluctuations due to

earth structure. This information can then be used to calculate the accuracy of yield estimates and

detection thresholds based on seismic information from an arbitrary array of seismometers, with a priori

knowledge of results from nearby explosions or earthquakes. Furthermore, this knowledge can be used

to design arrays in an optimal fashion to deal with random earth structure.
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Accomplishments

Statistical descriptions of variations in seismic-wave velocity in the earth are related to observa-

tions in phase, travel-time, and amplitude fluctuations of seismic-wave sigr.mis received at tcleseismic

and regional distances. Results were obtained by analysis of NORESS and NORSAR teleseismic and

regional data, by stochastic tomography techniques, and by numerical simulation.

Reviews of our previous work were published near the beginning of this contract period. The

review of n.-.terogenieities at the core-mantle boundary [Bataillc, Wu, and Flau6, 1990] showed that the

data (such as PKP precursors) can be explained by CMB topographical height variability of about 200

meters and horizontal scale of a few tens of kilometers. The review of heterogeneities under NORSAR

[Wu and Flattk, 1990] confirmed the Flatt6-Wu (FW) model of a power-law spectrum of heterogeneities

with a few percent rms variability extending down to depths of 250 km.

The original publication of the FW model involved a trial and error method of obtaining model

parameters. We have carried out a nonlinear inversion procedure to determine the parameters of the

FW model more precisely, and to determine uncertainties in those parameters [Flatt, Wu, and Shen,

1991). The inversion has verified the trial-and-error parameters, and has shown that the uncertainties

are relatively small on the parameters of the model, such as the power-law index and the depth to

which the heterogeneities extend,

One limitation of the data that were used in the work that determined the FW model was the

separation of the seismic stations on the surface of the earth. The data from subarray averages was

used, which meant that the smallest transverse separation available for the transverse coherence func-

tions (TCFs) was about 15 km. We have used individual station waveforms from about 60 events

recorded simultaneously at NORSAR and NORESS to determine the TCF of travel time at separations

from a few hundred meters to 80 km [Flatt6 and Xie, 1991). A copy of this preprint is included in this

final report. The result of this work is a further verification of the FW model. The information from

NORESS turns out to be confined to determining the tilt of the wavefront across this 3-km-diamcter

army; no smaller-scale fluctuations are detectable. The information contained in the TCF between

separations of a few hundred meters and 15 km is in fact measuring heterogeneities in the earth of a

few kilometers in size or greater. The reason that smaller heterogeneities are not relevant is that the

frequency band of significant energy (1-3 Hz) has wavelengths of 2-6 km, and the forward propagation

of these wavelengths are not sensitive to heterogeneities smaller than about 3 km.

A limitation of the stochastic tomography technique used to determine the FW model lies in :he

specific data used to compare with the model. The transverse and angular coherence functions (TCFs

and ACFs) are not a complete representation of the information contained in the arrival times and inten-

sities of each event at each seismometer. In order to increase the amount of information in the statisti-

cal coherence fun.s.ions to be utilized in tomographic inversions, we have defined a new more complete

set of coherence functions, called the Joint Transverse and Angular Coherence Functions [Wu and Xie,

1991). Work still needs to be done to use these new coherence functions in a tomographic inversion.
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Many workers have auempted deterministic tomography fits to travel-time anomalies at NOR-

SAR. We have embarked on a program to compare the results of deterministic tomography with those

of stochastic tomography [Zhang, Xie, and Flatt6, 1991]. We have taken the velocity fluctuations of the

deterministic models as measurements in three-dimensional space, we have determined the spectra of

those heterogeneities, and we have compared those spectra with the FW model. The main result of our

work to date is an understanding that both the deterministic and stochastic models lack resolution in the

vertical. This iack of resolution is manifest in the formulation of the stochastic model, but it has been

hidden in the deterministic models, because of the specific choices made as to layer thickness and total

thickness of the region of allowed heterogeneity (e.g. 100 km, or 200 kin). With that understanding, it

should be possible to determine the anisotropy ratio of the FW spectrum from the deterministic-

stochastic comparison, at least in the large-scale end of the spectrum.

We have expended a great deal of effort in a program to apply the same stochastic analysis to

regional propagation data as we have used for tclescismic events. Our efforts have been presented in

several seismology meetings. We have utilized data from NORESS and ARCESS arrays for events in

the distance range of several hundred kilometers. The success of this program depends upon identifying

bundles of energy that travel along reasonably well-defined paths within the crust: for example, with a

single reflection from the MOHO. Unfortunately, it has become evident that such well-defined ray

paths are seldom observable beyond the range of 100 km. As a result, very little progress has been

made.

Finally, the FW model parameters have been determined by use of a specific assumption abut

wave propagation behavior; that is, that the data being used have remained in the weak-fluctuation

regime. The validity requirement for this assumption has been validated. However, it has been shown

that the use of higher-frequency information will require the relaxation of this assumption; in other

words, strong-fluctuation theory must be used.

Despite much effort to develop analytical approaches to the strong-fluctuation regime, no such

approach has emerged that has the capability of being used in an inversion scheme. The only reliable

method of comparing with experimental observations of waves in random media has been developed by

the P.I. and collaborators; it is the use of the parabolic approximation in direct numerical simulations.

A major breakthrough in this area was achieved in this contract period with the successful comparison

with laser propagation through atmospheric turbulence (Martin and Flatte, 19901. This work showed

that the standard assumptions about the spectral behavior of turbulence, combined with the parabolic

equation, have all the physics of importance in understanding extensive aspects of the observed fluctua-

tions of intensity at a receiver. These aspects include the variance and the probability distribution of

intensity. Spatial patterns of intensity are also predictable by numerical simulation, and have the right

qualitative appearance.

The availability of the technique of numerical simulation should allow high-frequency seismic

data to be compared with model heterogeneities without the assumption of weak fluctuations.
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Conferences Attended

The principal investigator attended the following meetings during the contract period:

American Geophysical Union Meeting in San Francisco, December, 1989. A talk on regional

propagation was given.

Seismological Society of America Meeting, Santa Cruz, May, 1990. An invited talk on statistical

models of heterogeneities was given.

DARPA Seismic Research Symposium, Key West, September, 1990. A talk on the combination

of NORESS and NORSAR data was presented.

Seismological Society of America Meeting, San Francisco, March, 1991. A talk on statistical

models of heterogeneities was given.

DARPA Seismic Research Symposium, Keystone, Colorado, November, 1991. A poster on the

combination of NORESS and NORSAR data was presented.

American Geophysical Union Meeting in San Francisco, December, 1991. Posters on combining

NORESS and NORSAR data and on comparing deterministic and statistical models of hetero-

geneities were given.

-5,



THE TRANSVERSE COHERENCE FUNCTION AT NORSAR
OVER A WIDE RANGE OF SEPARATIONS

Stanley M. Flattnd and Xiao-Bi Xie
Institute of Tectonics, University of California, Santa Cruz

Abstract. We have used data from the 80-km-diameter NORSAR array and the 3-km-
diameter NORESS array to determine the Transverse Coherence Function (TCF) of arrival time
for spatial separations ranging from a few hundred meters to 80 km. To accomplish our objec-
tive, we have devised a method to combine data from arrays of different aperture. The pro-
cedure is based on information about rms fluctuations and rms tilts on each array. Synthetic
fluctuation fields with different statistical properties were generated to test the combination
method. Our results for the TCF from NORSAR and NORESS are in reasonable agreement with
the predictions of the Flattd-Wu model of heterogeneities under NORSAR.

Keywords: coherence function, array aperture, lithospheric heterogeneity, NORSAR

1. Introduction

During the last 25 years a number of seismic arrays have been installed globally and their
data have been widely used to investigate the structure under these arrays. From the stochastic
point of view, the structures are represented by a statistical model and a few statistical parame-
ters are used to describe the properties of the medium (e.g., Aki, 1973, Capon, 1974, Capon and
Berteussen, 1974, Berteussen et al, 1975a, b, Flattd and Wu 1988, Flattd et al 1991). These
parameters include rms velocity fluctuations, correlation distance of the inhomogeneities or the
power spectrum of the inhomogeneities, etc.

Inhomogeneities in the crust and mantle can result from different geological structures, and
their scales can range from grain size to continental scale. In other words, the inhomogeneities
are very broadband in the spatial wavenumber domain. But seismic observations which carry
information about the inhomogeneities (e.g., travel-time fluctuations, amplitude fluctuations and
various kind of coherence functions, etc.) are band lirrited because of two effects: first, the finite
wavelength of the bcismic waves, and second, the size of the real array and minimum sensor
separations. For example, the studies cited above use the NORSAR array whose original diame-
ter was 110 km, whose present diameter is 80 kin, and whose minimum sensor separation is
about 3 km (See Figure 1). Those studies used teleseismic waves with wavelength in the 3-6 km
regime. Thus the scale lengths that were studied range from about 3 km to 100 km. A much
smaller array (NORESS) is now in operation in the vicinity of NORSAR, with 3-km diameter
and minimum sensor separation of a few hundred meters. It is the purpose of our work to use
the NORESS data to extend our knowledge of the TCF at NORSAR down to scales less than 3
km, and to determine how that knowledge affects our understanding of the statistical structure of
seismic wavespeed.

If we used the data at NORESS independently, the obtained statistical structure of the inho-
mogeneities would be distorted because we would have no information about fluctuations with
scales larger than 3 km. But we do have simultaneous larger-scale information from the larger,
coarser NORSAR array. We have developed a special technique to combine data from large-
scale, coarse arrays with that from small-scale, fine arrays in order to construct a comprehensive
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coherence function. We have tested our technique using synthetic random fields with various
statistical properties. Finally, real data from the NORSAR area are investigated with this tech-
nique. Transverse coherence functions, rms travel-time fluctuations and slowness variations
from different arrays are used to create a comprehensive TCF of travel time. This comprehen-
sive TCF is compatible with the inhomogeneity model previously suggested by Flattd and Wu
(1988) and Flatt et al (1991).

It must be noted that although data from separations down to a few hundred meters are used
in our analysis, we are still restricted in our view of small-scale heterogeneities because of the
finite wavelength of the seismic waves. The wavelength limitation is due to the requirement of
significant energy observation for teleseismic events, which in our case is 1-3 Hz, or 2-6-km
wavelength. Because we are observing forward propagating waves with these wavelengths, the
TCF of travel time we observe even at separations of a few hundred meters is controlled by
heterogeneities of at least 2-km size (the cutoff is more likely to be in the regime of 3-5 kin). In
order to observe heterogeneities of significantly smaller size with NORESS, we would have to
have events with significant energy in much higher frequency intervals.

2. Transverse Coherence Functions
and the Effects of Array Size

Theoretically the transverse coherence function (TCF) is calculated from a fluctuation field
in an infinite domain, but any actual observation system is finite in the horizontal. Figure 2
schematically shows the fluctuation observations from real arrays, where curve t(x) is the travel
time advance (or similarly logarithmic amplitude) that should be observed on the earth's surface.
Travel-time data sampled by an array are fitted with a plane wavefront by a least-squares
method; after subtracting the fitted plane-wave arrival time, we obtain the travel-time fluctua-
tion. The TCF of travel-time is defined as

f (p) = (t(x)t(x + p))/(t 2 ) (1)

where p is the transverse separation and ( represents an ensemble average which we realize by
averaging over transverse position x.

The problem is to use independent observations on a smaller fine-scale array to find the
TCF at small separations. The following formula can be derived connecting the coherence func-
tions and various mean-square fluctuation measurements:

rtL) = ,2) [I 1_2(2
(4)1 L(PI SL ,S'r + _-(8U2)p 2 (2

where fL(p) and f(p) are coherence functions obtained from the large and small array respec-
tively, (2) and (6s) are mean square fluctuations for the large and the small arrays, and (u Z) is

the mean square slowness fluctuation of the small array relative to the large array. The (Su2 )
term dominates if the small array is very much smaller than the large array, while it is unimpor-
tant if the small array is very close to the size of the large array. Once the mean-square quanti-
ties are obtained, fs(p) can be corrected to fL(P) or vice versa. Thus, by combining different
observations (mean square fluctuations, mean square tilt, coherence functions etc.) from arrays
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of different sizes, we can conStrLct a comprehensive coherence function, fL(p), for wiich the
coherence at small values of p can be obtained from the data of a small array. Of course we still
can not obtain a coherence function at scales beyond the largest array being used.

The derivation of Eq (2) requires more space than available here, but can be briefly
described as follows. The difference between the travel-time fluctuations in a large and small
array can be expressed as a difference between the plane-wave fits to each array:

tL(X) - ts(x) = to + 8U-X (3)

where to and Bu are random variables that are independent of x, and the mean values (to) and
(8u) are both zero. Eq. (2) then follows from Eqs. (1) and (3), although the derivation requires
extensive statistical algebra, and care in treating the differences between the variances of the
fluctuations in the large and small arrays.

3. Analysis of Synthetic Fluctuations

To examine Eq. (1), numerical tests were carried out. Two-dimensional randor. fields with
two types of coherence functions were used: Gaussian exp (-p 2/a 2) and modified Bessel func-
tion Ko(p/a) , where a is the characteristic scale of the random field. Following Frankel (1989),
we call these random fields Gaussian and self-similar, respectively. A Gaussian random field is
dominated by large-scale fluctuations while a self-similar field is more like a broad-band random
field.

We have verified that Eq. (1) can be used to obtain a corrected TCF. Figure 3a shows
uncorrected TCFs obtained with various window sizes within a self-similar random field. Figure
3b shows the corrected TCFs. Similar results are obtained for a Gaussian coherence function.

4. Analysis of the Real Data from the NORSAR Area

We have divided the Norwegian Seismic Array (NORSAR) into several subarrays (Figure
1). It is expected that under NORSAR the statistical properties of the inhomogeneities are rela-
tively homogeneous. Because NORSAR, NORSAR-R, NORSAR-P, and NORESS are located in
the same area while their apertures are quite different, they provide us with an appropriate situa-
tion in which to apply our correction procedure to obtain a broad-band TCF.

The data used in our coherence analysis include: the P-wave travel-time anomalies at 22
subarrays of NORSAR from beams (Berteussen 1974), travel-time anomalies at 42 stations of
NORSAR-R from 62 events and travel time anomalies at 25 stations of NORESS from 57
events. All the above data are band-pass filtered between 1-3 Hz before analysis. For calculating
travel-time fluctuations we have used cross-correlation of the initial few seconds of the seismic
waveforms of different stations. The arrival-time difference betwe, n the two stations is the time
lag for maximum cross correlation. For calculating coherence functions we follow the method
of Flatte and Wu (1988), in which station-pair data are binned with respect to station transverse
separation. For comparison, Figure 3c gives the travel-time TCFs for these arrays. Table I lists
the rms values of travel-time fluctuations t ,.. log-amplitude fluctuations logA,.,,, and slowness
(tilt) fluctuations Sur,, for these arrays. Subarray data means the old data used by Flattd and Wu
(1988) which are averaged inside each subarray, and station data means more recent data from
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NORSAR-R, NORSAR-P and NORESS, which are directly from individual stations. The rms
relative slowness 8u,,,,, between NORSAR-R and NORSAR is calculated from old NORSAR
subarray data, 8u,,, between NORSAR-P and NORSAR-R is from individual station data, 8u,
between NORESS and NORSAR-R is calculated from 58 events which were simultaneously
recorded by both arrays. From Figure 3c and Table 1, it is clear that even in the same area, i.e.
where the NORSAR array is located, the statistical measurements are quite different for arrays
with different apertures, because each array is missing the effects of inhomogeneities with scales
larger than the array. For an array even as large as 100 km, it seems its coherence function still
has not reached its stable state, indicating that the inhomogeneities contain variations on scales
larger than 100 km.

Shown in Figure 3d are the same coherence functions as those in Figure 3c except that they
are corrected with Eq. (1). The NORSAR array is chosen as the reference lrray. The data listed
in Table 1 are used as the coefficients in Eq. (1). The variance (Bu2 ) 1'etween NORESS and
NORSAR is taken as the sum of the variances of the relative slowness of NORSAR-R with
respect to NORSAR (from old subarray data) and the relative slowness of NORESS with respect
to NORSAR-R (from simultaneously recorded events). Coherence functions from different
arrays are in good agreement. Previous work (Flatte and Wu 1988) gave only the coherence
functions with a smallest separation of 15 kin, which is limited by the separation between subar-
rays. Here, by combining the observations from individual stations of smaller arrays, the smal-
lest separation for individual points on the coherence function has been reduced to 5 km.

Our analysis of the wavefront across NORESS sJ'ows a plane wave within measurement
errors, (-10 ms) which means that the only significant ,i-..surement from NORESS is the slow-
ness relative to a larger array. Therefore we have used simultaneous events to determine the
mean-square slowness variation for NORESS relative to NORSAR-R. The assumption of
plane-wave tilts across NORESS combined with this mean-square slowness gives a specific
functional form (a parabola) for the TCF at small separations. This measurement from NORESS
is indicated by the shaded region (which includes uncertainty) near small separations in Figure
3d. The shape of this parabola depends on both the property of the underlying inhomogeneity
and the wave length of the seismic waves used to detect the inhomogeneity. Also shown in this
figure is the coherence function calculated from the inhomogeneity model determined by Flattd
et al (1991) from data including this TCF with only the points at separations larger than 15 km.
The theoretical curve is reasonably consistent with the observations. It must be remarked again
that the finite seismic wavelength limits the rapidity with which the TCF can drop near zero
separation. Thus heterogeneities of size much smaller than about 3-5 km cannot be seen with
this travel-time data. There is a slight dip near a separation of three kilometers in the theoretical
curve that is not seen in the observational data. It is likely that this dip is partially an artifact of
the sharp cutoff in the model spectrum of heterogeneities at a wavelength of 5.5 km.

5. Conclusions

Analysis of both synthetic and real travel-time data show that the array size has a very
strong effect on statistical observations of rms fluctuation, rms tilt and coherence analysis.
Before giving any geophysical explanation for those observations, the aperture-size effect must
be taken into consideration. The correction formula developed in our work can be used to com-
bine the observations from arrays of different sizes. Numerical tests have confirmed this tech-
nique. Potentially, this technique allows us to give a unique description of data acquired by
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arrays of different apertures in the same geographical area. If one makes the assumption of
homogeneous statistical behavior within very different geographical regions, then the same tech-
nique can be used to combine data from those different regions as well. Although only the TCF
of travel-time fluctuation is discussed here, this technique can also be used to deal with TCFs of
the amplitude data, or, with slight modification, could be used for angular coherence analysis.

The application of our correction technique to NORSAR and NORESS data has allowed us
to evaluate a TCF of travel time with separations ranging from 100 m to 80 km. The resulting
TCF is compatible with the inhomogeneity model determined by Flatti et al (1991) in which a
175-km-thick layer near the surface with large- and small-scale heterogeneities is underlain by a
75-km-thick layer of heterogeneities dominated by large scales, possibly representing an upper-
mantle boundary layer. The effective heterogeneity scale sizes that contribute to this TCF are in
the regime from about 3 km to 80 km, where the smaller-scale limit is caused by the finite
seismic wavelength available in these teleseismic data.

Acknowledgement. This work was supported by DARPA and Phillips Laboratory. We are
grateful for a grant from the W.M. Keck Foundation. We appreciate conversations with Ru-
Shan Wu. This is Contribution Number 149 from the Institute of Tectonics.
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Figure Captions

Fig. 1. Map of array configurations for NORSAR, NORSAR-R, NORSAR-P and NORESS.
The apertures of these arrays are about 110 kin, 80 km, 50 km and 3 kn, respectively.

Fig. 2. Sketch to show the fluctuations obtained from small and large arrays. Curve t(x) is the
observed travel time advance, lines L and S are planes fitted to the wave front for large and small
arrays; uL and us are their normal vectors. The shaded area is the fluctuation obtained with the
large array and the double shaded area is the fluctuation obtained with the small array. Note that
the fluctuation from a small array tends to be smaller and its tilt tends to be larger than from a
large array.

Fig. 3. Transverse coherence functions for (a) synthetic self-similar random fluctuation fields;
(b) synthetic data corrected by Eq. (1). The solid lines are from the original random field and
successive curves are from spatial windows with sizes of 60, 40, 30, 20, 10 and 6 units, respec-
tively. (c) data from NORSAR/NORESS for the different apertures shown in Figure 1. NOR-
SAR: closed circles; NORSAR-R: closed triangles; NORSAR-P: open triangles; NORESS: no
symbol (solid line). Note that although these arrays are located in the same region, their coher-
ence functions show quite different characteristics. (d) The same coherence functions as (c), but
after being corrected with Eq. (1). Only the mean-square slowness measurements from the
NORESS data are significant, and so the coherence function maps into a parabola that, including
uncertainties, is indicated by the shaded region. All the curves are reasonably consistent The
dashed line is the coherence function from the inversion of Flattd et al (1991).
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